Add Formulas

Formulas, as the name indicates are calculations that you could define in ManageEngine Analytics Plus to help you create the required reports. ManageEngine Analytics Plus provides a powerful formula engine to create any type of calculations required, to enable creating the required reports. Formulas are mathematical expressions that you create, which contains any combination of numbers, references of table columns, operators and functions etc. Functions are predefined mathematical formulas which are designed to perform specific well-known calculations.

ManageEngine Analytics Plus supports different flavors of formulas. The following is a summary of the various types of formulas that are supported in ManageEngine Analytics Plus:

  • Custom Formula Columns: These are formula types where you could add a new column to your data table, whose values are derived based on the calculation/formula defined. You can define any powerful mathematical formula which uses the table columns in combination with operators and in-built functions. As the output of the formula adds a new column in the table is called a Formula Column.
    • In-built Formulas: ManageEngine Analytics Plus provides a useful set of in-built custom formulas, available by default, to perform common calculations easily. These formulas can be applied only to single column. The result of a calculation (formula) will be added as another column to the base table.
  • Aggregate Formulas: Aggregate Formulas are formulas where you should use aggregate functions (SUM, AVG..) in the calculation. The result of Aggregate Formulas will not be added as another column in the base table. They will just be associated to the table on which it has been created and can be used in creating reports (Charts, Pivot Tables and Summary Views) like any other table columns.

Custom Formula

ManageEngine Analytics Plus allows you to define your own powerful formulas to meet your specific reporting requirements. This enables you to easily perform from simple calculations such as addition and subtraction to a complex combination of in-built functions. As the output of the formula adds a new column in the table is called a Formula Column. You can use these formula columns in creating reports in the same way you use other columns in a table.

ManageEngine Analytics Plus provides you with a variety of in-built functions which are predefined mathematical formulas which are designed to perform specific well-known calculations easily. These in-built functions can be used in combination with the table columns and basic arithmetic operators like +, -, / and * to create your formula column.

To create and use custom formula columns:

  • From the Explorer tab of the workspace, select the table to which you want to add the formula column.
  • Select Add > Formula Column option from the toolbar or select a column in the table and choose Formula Column from the right click pop-up menu.
  • The Formula Column dialog box will open as shown below. This dialog box provides easy access to the names of the columns in your table, as well as to many of the in-built functions that are available to create formulas. A brief description of the function with syntax and an example will be displayed at the bottom of the dialog box when you hover your mouse over a function.

  • In the Formula Column dialog box, select the columns and functions that you want to insert from the list under the Columns and the Function boxes.

For example, to build a custom formula that adds particular number of days to a given date:

  • Select the Add Date function under the Functions box. You will notice that adddate() syntax appears in the Formula text box.
  • In the Formula text box, position the cursor in between the parenthesis, select the date column to which you wanted to add date using the Columns option.
  • Enter the number of days (say 10) that you want to add separated by a comma.

To create a formula column with this expression, type column name in the Formula Column Name text box and then click OK. A new formula column will be created in your table as shown below.

You can edit the formula column any time by right clicking on the formula column listed in the table and clicking Edit Custom Formula in the popup menu. Also refer to View/Edit Formulas to know how you could view all the formulas defined on a table and handle edition or deletion of the same.

Quick Add option for Formula Columns

ManageEngine Analytics Plus provides an easy and convenient way to add formula columns which are based on a limited set of widely used functions. You can find this quick add option as follow.

  • Select a column based on which you want to add the formula column.
  • Click Add > Add Formula option on the toolbar.

  • ManageEngine Analytics Plus automatically identifies the data type of the column selected and displays a list of widely used pre-defined formulas which are applicable to that as shown in the screenshot below.
  • On selecting the required formula from the list, ManageEngine Analytics Plus applies the formula on the corresponding column and adds a new formula column, at the right end of the table.

In-built functions provided by ManageEngine Analytics Plus

ManageEngine Analytics Plus provides you with a variety of in-built functions which are predefined mathematical formulas designed to perform specific well-known calculations easily. The following table gives a list of inbuilt functions provided by ManageEngine Analytics Plus which can be used to create any formula. The inbuilt formulas are categorized/grouped based on type of function.

Date Functions

FUNCTIONDESCRIPTIONEXAMPLE
Absolute Month - absmonth(date_column)This function will return month and year from a given date value with the format (Month, yyyy).absmonth('2011/8/7') = August, 2011
Absolute Quarter - absquarter(date_column)This function will return Quarter and year from a given date value with the format (Quarter, yyyy).absquarter('2011/8/7') = Q3, 2011
Absolute Week - absweek(date_column)This function will return week and year from a given date value with the format (Week, yyyy).absweek('06/04/2011') = W14, 2011
Add Date -
adddate(date_column, num_of_days)
This function will add the specified number of days(num_of_days) to the given date value.adddate('2011/8/7',10) = 2011/8/1
Add Week
addweek(date_column, num_of_weeks)
This function will add the specified number of weeks(num_of_weeks) to the given date value.addweek('2013-08-27',10) = 2013-11-05
Add Month
addmonth(date_column, num_of_months)
This function will add the specified number of months(num_of_months) to the given date value.addmonth('2013-08-27',10) = 2014-06-27
Add Quarter
addquarter(date_column, num_of_quarters)
This function will add the specified number of quarter(num_of_quarter) to the given date value.addquarter('2013-08-27',10) = 2016-02-27
Add Year
addyear(date_column, num_of_years)
This function will add the specified number of year(num_of_year) to the given date value.addyear('2013-08-27',10) = 2023-08-27
Add Time - addtime(data_column, time)This function returns the day by adding the time to the given date column.addtime
('2002/02/21 18:23:26', '01:20:10') = 2002/02/21 19:43:36
Add Hours
addhour(date_column, num_of_hours)
This function returns the day by adding the number of hours to the given date column.addhour('2013-08-27',10) = 2013-08-27 10:00:00
Add Minutes
addminute(date_column, num_of_minutes)
This function returns the day by adding the number of minutes to the given date column.addminute('2013-08-27',10) = 2013-08-27 00:10:00
Add Seconds
addsecond(date_column, num_of_seconds)
This function returns the day by adding the number of seconds to the given date column.addsecond('2013-08-27',10) = 2013-08-27 00:00:10
Peroid Add
period_add(year_month, num_of_months)
Adds the specified number of months to the period and returns in the format
'yrmth'.
period_add(198608,6) = 198702
Age Months
age_months(from_date, to_date [Optional])
This function returns the age in months between the two given date columnsage_months('2013-08-27','2014-06-28') = 10
Age Years
age_years(from_date, to_date [Optional])
This function returns the age in months between the two given date columnsage_years('2013-08-27','2018-08-03') = 4
Business Completion Day
business_completion_day(from_date, num_of_days, exclude_weekends [Optional])
This function returns the date adding the given number of days excluding the specified weekends. In case weekends is not provided, then Saturday and Sunday are considered as weekends by default.business_completion_day('2018-01-01',10) = 2018-01-15
Business Days
business_days(from_date, to_date, exclude_weekends [Optional])
This function returns the count of the business days between the two given date columns excluding specified weekends. In case weekends is not provided, then Saturday and Sunday are considered as weekends by default.business_days('2018-01-27','2018-08-03') = 134
Business Hours
​business_hours(from_datetime, to_datetime, work_start_time, work_end_time, exclude_weekends [Optional])
This function returns the count of business hours in the business days between the two given datetime columns. In case weekends is not provided, then Saturday and Sunday are considered as weekends by default.business_hours('2018-01-27 10:00:00','2018-08-03 08:00:00','09:00:00','10:00:00','1000001') = 134
Convert String to Date
convert_string_to_date(string_column, date_format_of_the_value)
Converts the string into date and returns it in the specified format.convert_string_to_date('24/12/2009', '%d/%m/%Y') = 2009-12-24
Convert to Datetime
convert_to_datetime(string_column, date_format)
This function returns the date-time value by converting the given string.convert_to_datetime('2013 Aug 27','yyyy MMM dd') = 27 Aug, 2013
Convert TZ
convert_tz(date_column, current_timezone_offset, timezone_to_be_converted_offset)
This function converts the timestamp or a date time value from one time zone to another. The parameters to specify the time zone can be given as Time Zone identifiers, Time Zone Abbreviations orOffsets. To consider the daylight savings during conversion automatically, use Time zone identifiers as parameters.
  • convert_tz('2024-01-01 12:00:00','+00:00','+10:00') = 2004-01-01 22:00:00
  • convert_tz("04-11-2024 00:00", 'UTC', 'EST')=03 Nov, 2024 19:00:00
  • convert_tz(23 Nov, 2024 10:00:00, 'Australia/Canberra', 'NZ') = 23 Nov 2024 12:00:00
Current Date 
currentdate()
This function updates the current date of the computer or server automaticallycurrentdate() = 27 Sep, 2024 10:06:18
Current Time
​current_time()
This function updates the current time automaticallycurrent_time() = 27-11-2024, 14:30
Current Timestamp
current_timestamp()
This function updates the current date and time automaticallycurrent_timestamp()=2024-11-27 14:30:15
Now
now()
This function updates the current date and time automaticallynow()= 27 Sep, 2024 10:06:18
Today
today()
This function updates the current date automaticallytoday()=27 Sep, 2024
Tomorrow
tomorrow()
This function returns the date one day after the current datetomorrow()=28 Sep,2024
Yesterday
yesterday()
This function returns the date for the previous dayyesterday()=26 Sep, 2024
UTC date
utc_date()
Returns the current UTC date.utc_date()=27 Sep, 2024
UTC time
utc_time()
Returns the current UTC time.utc_time()= 2024-11-27 14:30
UTC date-time 
utc_timestamp()
Returns the current UTC date-time value.utc_timestamp()= 2024-11-27 14:35:45
Date
date(date_column)
This function returns the date part of the given date and time value.date('2013-08-07 14:15:16') = 2013-08-07
Date Format
date_format(date_column, date_format_to_be_converted)
This function returns the string form of the date for given date format.date_format('2008-08-03','%W %M %Y') = Sunday August 2008
Date and Time Diff - dateand
timediff(Unit, From Date, To Date[optional]
This function returns the date and time difference between two date columns based on the units specified. The supported units are SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, YEAR.dateandtimediff(DAY, '2015-01-01', '2015-05-01')=120
The above example returns the difference between the given dates in Days.
Date and Time Diff in Duration -
datetime_diff_in_duration(date_column, date_column [Optional])
Calculates the date-time difference between the given columns, and returns it as duration.
  • datetime_diff_in_duration('1990-08-17 14:15:16', '1990-08-17 16:15:14') = 0.1:59:58
  • datetime_diff_in_duration('1990-08-17 14:15:16') = 11743.17:18:40
Date Diff
datediff(date_column1, date_column2)
This function returns the difference between the two given date columns.datediff('2011/8/11','2010/9/11') = 334
Period Diff
period_diff(year_month, year_month)
Returns the difference between two periods in months.period_diff(198608,198602) = 2
Day - day(date_column)This function returns the day of the given date value.day( '2024/11/27') = Wednesday
Day Name
dayname(date_column)
This function returns the name of the weekday for the given date value(Sunday,Monday,...).dayname('1990-08-07') = Tuesday
Day of Week 
dayofweek(date_column)
This function will return the number of the day of week of the given date value (Sunday = 1, Monday = 2,...).dayofweek('2011/9/9') = 6
Day of Month
dayofmonth(date_column)
This function returns the day of the month for the given date value.dayofmonth('1990-08-07') = 7
Day of Quarter
dayofquarter(date_column)
This function returns the count of days from the start day of the quarter to the given date value.dayofquarter('2017-08-07') = 38
Day of Year - dayofyear(date_column)This function will return the number of the day of the year of the given date value (0 through 365).dayofyear('2011/9/2') = 245
Days Between
​days_between(from_date, to_date [Optional])
This function returns the count of day between the two given date.days_between('2018-01-27','2018-08-03') = 188
End date
end_day(date_units, date_column)
This function returns the end date for the given date value and date units.end_day(month,'2018-08-27') = 2018-08-31
First Date Current Week
first_date_current_week(date_column, week_start_day [Optional])
This function returns the day the current week begins with. You can choose to set the start day of your week in the parameter week_start_day by specifying 1 - Sunday, 2- Monday,... 7 - Saturday. By default Sunday is the first day of the week.first_date_current_week('2013-10-11') = 2013-10-06
From Unixtime - fromunixtime(seconds)This function returns the unix time for the given seconds value.fromunixtime('1000') = 1970/01/01 05:46:40
Hour - hour(date_column)This function returns the hour of the given date value.hour('2011/8/7 10:35:23') = 10
Last Day - lastday(date_column)This function returns the last day of the month for the given date value.lastday('2011/9/7') = 2011/9/30
Last N Days
last_nday(date_column, num_of_days)
This function returns a date that is N number of days before the given date.last_nday('2018-08-04',15) = 2018-07-21
Last N Months
last_nmonth(date_column, num_of_months)
This function returns the date value for the given year and num_of_days values.last_nmonth('2018-08-04',15) = 2017-06-04
Next N Days
​next_nday(date_column, num_of_days)
Returns a date that is N number of days after the given date. This is calculated
from a day after the given date.
next_nday('2018-08-04',15) = 2018-08-19
Next N Month
next_nmonth(date_column, num_of_months)
Returns a date that is N number of months after the given date. This is calculated
from a day after the given date.
next_nmonth('2018-08-04',15) = 2019-11-04
Next Weekday
next_weekday(date_column, weekday)
Returns the next date when the specified weekday falls.next_weekday('2018-08-01',1) = 2018-08-05
Previous N Day
previous_nday(date_column, num_of_days)
Returns a date that is N number of days before the given date. This is calculated from a day before the given date.previous_nday('2018-08-04',15) = 2018-07-20
Previous N Months
previous_nmonth(date_column, num_of_months)
Returns a date that is N number of months before the given date. This is calculated from a day before the given date.previous_nmonth('2018-08-04',15) = 2017-05-04
Make Date - makedate(year,num_of_days)This function returns the date value for the given year and number of the day value (0 through 365)makedate('2011','23') = 2011/1/23
Microsecond
microsecond(date_column)
This function returns the microsecond value from the given date-time argument value.microsecond('1990-08-07 10:35:23.3427') = 342700
Minute - minute(date_column)This function returns the minutes of the given date value.minute('2011/8/7 10:35:23') = 35
Second - second(date_column)This function returns the seconds of the given date/time value.second('2011/9/7 10:35:23') = 23
Modified Time -modifiedtime()  This function returns the created time of the record (if the record is newly added) or the last modified time of the record. When you apply this function, initially it will return the time at which the formula has been created. Subsequently it will return only the modified time of the record. 
Month - month(date_column)This function returns the name of the month of the given date value.month('2011/9/7') = September
Month Name
monthname(date_column)
This function returns the name of the month of the given date value.monthname('2011/9/7') = September
Month Number  - monthnum(date_column)This function returns the number of the month of the given date value.monthnum('2011/9/7') = 9
Months Between
months_between(from_date, to_date [Optional], iswhole_value [Optional])
Returns the count of months in fractional value considering 31 days as a month.months_between('2013-08-27','2018-08-03',1) = 59
Quarter - quarter(date_column)This function returns the quarter of the given date value.quarter('2011/8/7') = Q3
Quarter Name
quartername(date_column, fiscal_start_month [Optional])
Returns the quarter name of the given date value as a string.quartername('1990-08-07') = Q3
Quarter Number
quarternum(date_column, fiscal_start_month [Optional])
Returns the quarter of the given date in numeric format.quarternum('1990-08-07') = 3
Second to Time
sec_to_time(seconds)
Converts the given number of seconds to time and returns it in hours, minutes and seconds.sec_to_time(86399) = 23:59:59
Second
second(date_column)
Returns the seconds of the given date value.second('1990-08-07 10:35:23') = 23
Start Date
start_day(date_units, date_column)
Returns the start date for given date value and date units.start_day(month,'2018-08-27') = 2018-08-01
Sub Date - subdate(date_column,num_of_days)This function returns the date by subtracting the number of days(num_of_days) from the given date value.subdate('2011/9/15','6') = 1990/9/9
Sub Time - subtime(date_column,time)This function returns the date by subtracting the time from the given date with time value.subtime('2011/02/21 18:23:26','01:20:10') = 2011/02/21 17:03:16
Time
time(date_column)
Returns the time value of the given date-time value argument.time('2013-08-07 14:15:16') = 14:15:16
Time Format
time_format(time, time_format_to_be_converted)
Converts the time to the specified format and returns the same.time_format('19:30:41.32','%H %h %i %s %f') = 19 07 30 41 320000
Time to Sec
time_to_sec(date_column)
Converts the time value in hours and minutes to seconds and returns the same.time_to_sec('2013-08-07 14:15:16') = 51316
Time Diff
timediff(to_date, from_date)
Returns the difference between two time values passed in the 2 arguments.timediff('1990-08-17 16:15:14','1990-08-17 14:15:16') = 01:59:58
Timestamp
timestamp(date_column)
Returns the date time expression for a given date value.timestamp('2008-11-05') = 2008-11-05 00:00:00
Timestamp Add
timestampadd(unit, numeric_column, date_column)
Returns the date time after adding the specified number of interval.timestampadd(week,1,'2008-11-05 19:00:00') = 2008-11-12 19:00:00
Timestamp Diff
timestampdiff(unit, from_date, to_date)
Subtracts the first argument from the second argument and returns the value in the
specified unit.
timestampdiff(year,'2002-05-01','2001-01-01') = -1
Timestamp Diff in Duration - timestamp_diff_in_duration(date_column, date_column)Calculates the date time difference between the given timestamp columns  and returns it as duration.timestamp_diff_in_duration('1990-08-17 16:15:14', '1990-08-17 14:15:16') = 0.1:59:58
Unix Timestamp
unix_timestamp(date_column [Optional])
Calculates the total number of seconds fromï¿1⁄2 the date '1970-01-01 00:00:00' to the given date-timeï¿1⁄2 and returns the same.unix_timestamp('2018-10-10 12:35:45') = 1539174945
Week
week(date_column)
Returns the week of the given date.week('2008-01-14') = 2
Weekday
weekday(date_column)
Returns weekday of the given date value.weekday('1990-08-07') = Tuesday
Week of Month
weekofmonth(date_column)
Returns the week number of the month for the given date value.weekofmonth('2008-01-14') = 3
Week of Year
weekofyear(date_column, week_start_day [Optional], week_mode [Optional], fiscal_start_month [Optional]
Returns the week number of the given date as numeric value.weekofyear('1990-08-07') = 32
Year - year(date_column)This function returns year from the given date value.year('2011/9/7') = 2011
Year Week
yearweek(date_column)
Returns the year and week of the given date.yearweek('2008-01-14') = 200802

Duration Functions

FUNCTIONDESCRIPTIONEXAMPLE
Add Duration  - add_duration(
duration_column, duration_column)
Returns the duration in the default format ('%D.%H:%m:%s') by adding the values in the specified duration columns.
  • add_duration
    ('5.0:0:0', '2.1:2:3') = 7.1:2:3
  • add_duration
    ('3.5:20:30', '1.30:45:40') = 5.12:06:10
Add Days to Duration -
add_days_to_duration(
duration_column, num_of_days)
Returns the duration in the default format ('%D.%H:%m:%s') by adding the number of days to the specified duration column.add_days_to_duration
('100.11:22:33', 5)= 105.11:22:33
Add Hours to Duration - add_hours_to_duration(
duration_column, num_of_hours)
Returns the duration in the default format ('%D.%H:%m:%s') by  adding the given number of hours to the specified duration column.add_hours_to_duration
('100.11:22:33', 5) = 100.16:22:33
Add Minutes to Duration - add_minutes_to_duration(
duration_column, num_of_minutes)
Returns the duration in the default format ('%D.%H:%m:%s')by  adding the given number of minutes to the specified duration column.add_minutes_to_duration
('100.11:22:33', 5) = 100.11:27:33
Add Seconds to Duration - add_seconds_to_duration(
duration_column, num_of_seconds)
Returns the duration in the default format ('%D.%H:%m:%s') by adding the given number of seconds to the specified duration column.add_seconds_to_duration
('100.11:22:33', 5) = 100.11:22:38
Add Weeks to Duration -add_weeks_to_duration(
duration_column, num_of_weeks)
Returns the duration in the default format ('%D.%H:%m:%s') by adding the given number of weeks to the specified duration column.add_weeks_to_duration
('100.11:22:33', 5) = 135.11:22:33
Duration to Month - Duration_to_months
(duration_column)
Identifies the number of months present in the duration value and return it as a number.duration_to_months
('500.10:35:23') = 16
Duration to Days - duration_to_days(
duration_column
)
Identifies the number of days present in  the duration argument and returns it as a number.duration_to_days
('500.10:35:23') = 500
Duration to Hours - duration_to_hours(
duration_column
)
Identifies the number of hours present in the duration argument and returns it as a number.duration_to_hours
('500.10:35:23') = 12010
Duration to Minutes - 
duration_to_minutes(
duration_column)

Identifies the number of minutes present in the duration argument and returns it as a number.
duration_to_minutes
('500.10:35:23') = 720635
Duration to Seconds -  
duration_to_seconds(
duration_column)

Identifies the number of seconds present in  the duration argument and returns it as a number.
duration_to_seconds(
'500.10:35:23') = 43238123
Duration to Weeks - duration_to_weeks(duration_column)Identifies the number of weeks present in the duration argument and returns it as a number.duration_to_weeks(
'500.10:35:23') = 71
Duration to Years - duration_to_years(duration_column)
 
Identifies the number of years present in the duration argument and returns it as a number.duration_to_years
('500.10:35:23') = 1
Make Duration - make_duration
(num_of_years, num_of_months, num_of_weeks, num_of_days, num_of_hours, num_of_minutes, num_of_seconds)

Calculates the duration using the given number of years, months, weeks, days, hours, minutes and seconds. Returns the calculated values in the default format ('%D.%H:%m:%s').

Enter 0 if any of the specified arguments (years, months, weeks, days, hours, minutes, and seconds) does not have a value.

make_duration
('1', '11', 0, '21', '9', 50,' 5.777') = 721.10:59:23
Subtract Duration - sub_duration(duration_column, duration_column)Returns the duration in the default format ('%D.%H:%m:%s') by subtracting the values in the specified  duration columns.
  • sub_duration
    ('5.05:03:04', '2.01:00:00') = 3.04:03:04
  • sub_duration
    ('2.01:00:00', '5.05:03:04') = -3.04:03:04
Subtract Days from Duration - sub_days_from_duration
(duration_column, num_of_days)
Returns the duration in the default format ('%D.%H:%m:%s') by subtracting the given number of days to the specified duration column.
  • sub_days_from_duration
    ('9.07:06:06', 5) = 4.07:06:06
  • sub_days_from_duration
    ('9.07:06:06', 10) = -0.16:53:54
Subtract Hours from Duration - sub_hours_from_duration
(duration_column, num_of_hours)
Returns the duration in the default format ('%D.%H:%m:%s') by subtracting the given number of hours to the specified duration column.
  • sub_hours_from_duration
    ('9.07:06:06', 5) = 9.02:06:06
  • sub_hours_from_duration
    ('9.02:16:45', 5) = 8.21:16:45
  • sub_hours_from_duration
    ('9.02:16:45', 45) =  7.05:16:45
Subtract Minutes from Duration -sub_minutes_from_duration
(duration_column, num_of_minutes)
Returns the duration in the default format ('%D.%H:%m:%s') by subtracting the given number of minutes to the specified duration column.
  • sub_minutes_from_duration
    ('9.07:06:06', 5) = 9.07:01:06
  • sub_minutes_from_duration
    ('8.04:08:06', 15) = 8.03:53:06
  • sub_minutes_from_duration
    ('8.04:08:06', 75) =  8.02:53:06
Subtract Seconds from Duration -sub_seconds_from_duration
(duration_column, num_of_seconds
)
Returns the duration in the default format ('%D.%H:%m:%s') by subtracting the given number of seconds to the specified duration column.
  • sub_seconds_from_duration
    ('9.07:06:06', 5) = 9.07:06:01
  • sub_seconds_from_duration
    ('9.07:06:06', 15) = 9.07:05:51
Subtract Weeks from Duration -sub_weeks_from_duration(
duration_column, num_of_weeks)
Returns the duration in the default format ('%D.%H:%m:%s') by subtracting the given number of weeks to the specified duration column.Sub_weeks_from_durrom_duration
('200.07:06:06', 5) = 165.07:06:06
To Duration - to_duration(numeric_column,[duration_unit])Converts the numeric column into duration data type. The conversion is based on the duration unit specified.
By default, the duration unit is taken as second.
  • to_duration(40) = 0.00:00:40
  • to_duration(5, minute) = 0.00:05:00
  • to_duration(1.75, hour) = 0.01:45:00
  • to_duration(40, days) = 40.00:00:00
Round Duration - round_duration(duration_column,duration_scale)Returns the duration value rounded to the given duration scale.
  • round_duration('122.22:38:58.629', second) = 122.22:38:59
  • round_duration('122.22:38:58.629', minute) = 122.22:39:00
  • round_duration('122.22:38:58.629', hour) = 122.23:00:00
  • round_duration('122.22:38:58.629', day) = 123.00:00:00

Numeric Functions

FUNCTIONDESCRIPTIONEXAMPLE
Abs - abs(numeric_column)This function returns the absolute value (number without sign) of the 'numeric_column'pi() = 3.14159265358979
Acos - acos(numeric_column)This function returns the arc cosine value of the specified 'numeric_column'. Returns NULL if the 'numeric_column' is not in the range-1 to 1.pow(2,3) = 8
Asin - asin(numeric_column)This function returns the arc sine value of the specified 'numeric_column'. Returns NULL if the 'numeric_column' is not in the range-1 to 1.rand() = 0.282164005825449
Atan - atan(numeric_column)This function returns the arc tangent value of the specified 'numeric_column'.atan(2) = 1.107149
Atan2 - atan2(numeric_column1, numeric_column2)This function returns the arc tangent of the specified columns 'numeric_column1' / 'numeric_column2atan2(0.8, 0.6) = 0.927295
Ceil - ceil(numeric_column)This functions rounds the 'numeric_column' to the nearest integer which is greater than the 'numeric_column'ceil(11.56) = 12
Ceiling
ceiling(numeric_column)
Returns the smallest integer that is greater than or equal to the value of the
argument.
ceiling(10.43) = 11
Conv
conv(column, current_base, to_be_converted_base)
Converts the number string from the given base to the required base.conv('a',16,2) = 1010

Convert base

convertbase(column, current_base, to_be_converted_base)

Returns the converted string representation of the number N, from current base to
the to be converted base.
convertbase('a',16,2) = 1010
Cos - cos(numeric_column)This function returns the cosine value of the specified 'numeric_column'cos(0) = 1
Cot - cot(numeric_column)This function returns the cotangent value of the specified 'numeric_column'cot(0.25) = 3.916317
CRC32
crc32(string_column)
Returns a 32 bit unsigned output after calculating the cyclic redundency check.crc32('111') = 1298878781
Degrees - degrees(numeric_column)This function returns the angle in Degrees equivalent to the given Radiansdegrees(1) = 57.2957795
Exp - exp(numeric_column)This function returns the exponential value of the 'numeric_column'exp(2) = 7.389056
Floor - floor(numeric_column)Rounds the 'numeric_column' to the nearest integer which is less than the 'numeric_column'floor(11.56) = 11
Format
format(numeric_column1, numeric_column2)
Formats the number by rounding off the number to decimal places specified in the second argument and returns the value.format(1.0001111,5) = 1.00011
Greatest - greatest(numeric_column,..., numeric_column)Gives the greatest of the given arguments.greatest(10,20,5) = 20
Least - least(numeric_column,..., numeric_column)Gives the least of the given arguments.log10(3) = 0.477121
Ln - ln(numeric_column)This function returns the natural logarithm of the specified 'numeric_column'ln(5) = 1.609438
Log
log2(numeric_column)
Returns the logarithm to the base-2 of the numeric column.log2(32) = 5
Log10 - log10(numeric_column)This function returns the logarithm to the base-10 of the specified 'numeric_column'log10(3) = 0.477121
Log2 - log2(numeric_column)This function returns the logarithm to the base-2 of the 'numeric_columnlog2(32) = 5
Mod - mod(numeric_column1, numeric_column2)Returns the remainder of the 'numeric_column1' divided by 'numeric_column2'mod(10,3) = 1
OCT
oct(column)
Returns the octal value of the number given in the argument.oct(12) = 14
Pi - pi()This function returns the numeric value of the pi.pi() = 3.14159265358979
Power - pow(numeric_column1, numeric_column2)This function returns the value of 'numeric_column1' raised to the power of 'numeric_column2'pow(2,3) = 8
Random - rand()Returns a random value between 0 and 1.rand() = 0.9233482386203
Radians - radians(numeric_column)Returns the angle in radians equivalent to the given degreesradians(180) = 3.1415926
Round - round(numeric_column)Returns the rounded integer value of the 'numeric_column'.round(10.67) = 11
Sign - sign(numeric_column)Returns-1, 0, or 1, if the 'numeric_column' is negative, zero, or positive.sign(-23) =-1
Sin - sin(numeric_column)Returns the sine value of the 'numeric_column'.sin(0) = 0
Square - square(numeric_column)Returns the square of the specified 'numeric_column'.square(10) = 100
Square Root - sqrt(numeric_column)Returns the square root of the specified 'numeric_column'.sqrt(16) = 4
Tan - tan(numeric_column)Returns the tangent value of the specified 'numeric_column'.tan(0.5) = 0.546302

String Functions

FUNCTIONDESCRIPTIONEXAMPLE
ASCII
ascii(string_column)
Returns the ASCII value of the first character of the given argument.ascii('abcddb') = 97
Bit Length
bit_length(string_column)
Returns the value of the length of the string argument in bits.bit_length('AA') = 16
Char
char(numeric_column)
Returns a String of characters formed from the code values of the ASCII code
given in the arguments.
char(97,98) = ab
Char Length
char_length(string_column)
Returns the number of characters present in the argument.char_length('aa1') = 3
Character Length
character_length(string_column)
Returns the number of characters present in the argument.character_length('aa1') = 3
Concat - concat(string_column,...,string_column)Returns the concatenated string of the given arguments. If any one of the argument is null, it returns null.concat('abcd','ef','db') = abcdefdbd
Concat Ignore Null
concat_ignore_null(string_column1, string_column2, ...)
Returns the concatenated string of the given value ignoring null.concat('abcd','ef',null,'db') = abcdefdb
Concat_WS - concat_ws(separator,string_column1
,....,string_columnN)
Returns the concatenated string of the given arguments separated by the given separator. If the separator is null, it returns null.concat_ws('-','abcd','ef','db') = abcd-ef-db
ELT
elt(numeric_column, string_column1, string_column2, ...)
Returns the string value available at the index number specified in the first
argument.
elt('2','red','rose','is','beautiful') = rose
extract_json
extract_json(json data, path 1, path 2, ...)
Extracts the value from the given JSON based on the key and index  provided.extract_json(' "Name": "Jane Doe", "Address": ["Los Angeles", "California"1}', 'Address', '[0]') = Los Angeles
Field
field(string_column1, string_column2, ...)
Searches the value in the first argument with all the rest of the arguments and
returns the position of the argument where the first match is found.
field('as','has','as','have') = 2
Find in Set
find_in_set(string_column, string_column)
Searches the value in the first argument with the substrings in the second argument, seperated by commas, and returns the position of the substring where the first match is found.find_in_set('10','2,5,8,10') = 4
Hex
hex(string_column)
Returns the corresponding hexadecimal number for each character of the given
string.
hex(255) = FF
Insert - insert(string_column, start_pos, len, new_string)Returns the string 'string_column', with the substring beginning at position 'start_pos' and 'len' characters long replaced by the string 'new_string'. 'start_pos' should be greater than 0. When len is zero, the 'new_string' is inserted previous to the position 'start_pos'.insert('abcddb', 3, 2, 'efgh') = abefghdb
Initial Cap
initcap(string_column)
Converts the first character to upper case.initcap('analytics') = Analytics
Index of - indexof(string_column, sub_string)Returns the index of the first occurrence of the string 'sub_string' in string 'string_column'.indexof('abcddb','db') = 5
Instr
instr(string_column, sub_string)
Returns the position of the first match of second string argument in the first
argument.
instr('impossible','possible') = 3
Lcase
lcase(string_column)
Returns the string 'string_column' with all characters of the given column
changed to lowercase.
lcase('ABCd') = abcd
Left - left(string_column, len)Returns the 'len' number of characters from the left-hand side of the string 'string_column'.left('abcdef',3) = abc
Length - length(string_column)Returns the character length of the string.length('abcddb') = 6
Locate
locate(sub_string, string_column, start_pos)
Returns the index of the first occurence of the string 'sub_string' in string
'string_column' starting at the position 'start_pos'.
locate('db','zohodbdb',6) = 7
Lower
lower(string_column)
Returns the string 'string_column' with all characters of the given column
changed to lowercase.
lower('AbCD') = abcd
Lowercase - lowercase(string_column)Returns the string 'string_column' with all characters changed to lowercase.lowercase('AbCD') = abcd
Lpad - lpad(string_column, len, pad_string)Returns the string 'string_column', left-padded to a length of 'len' characters with the string 'pad_string'. If length of the string 'string_column' is greater than 'len', then the first 'len' characters of 'string_column' is returned.lpad('DB',5,'a') = aaaDB
Ltrim - ltrim(string_column)Returns the string 'string_column' with leading spaces removed.ltrim(' abcd') = abcd
Make Set
make_set(numeric_column, string_column, ...)
Returns the corresponding 'set' of arguments from the string arguments that have
the bit specified in the first argument.
make_set(1,'a','b','c') = a
Mid
mid(string_column, start_pos, string_len)
Return a string from 'string_column' starting at position 'start_pos' with a
character length of 'len'.
mid('abcddb', 1, 4) = abcd
Octet Length
octet_length(string_column)
Returns the byte length of the string.octet_length('abcddb') = 6
ORD
ord(string_column)
If the first character of the string argument is a multi-byte character, then the code calculated from the below formula is returned. 1st byte code + (2nd byte code * 256) + (3rd byte code * 256 * 256) + . . .ord('2') = 50
Repeat - repeat(string_column,count)repeat('Abcd',3) = 'AbcdAbcdAbcd' 
Replace - replace(string_column, from_string, to_string)Returns the string with all occurrences of the string 'from_str' replaced by the string 'to_str'replace('abcdac','ac','db') = abcddb
Reverse - reverse(string_column)Returns the reverse string of 'string_column'.reverse('abcd') = dcba
Right - right(string_column, len)Returns the 'len' number of characters from the right-hand side of the string 'string_column'right('abcdef',4) = cdef
Rpad - rpad(string_column, len, pad_string)Returns the string 'string_column', right-padded to a length of 'len' characters with the string 'pad_string'. If length of the string 'string_column' is greater than 'len', then the first 'len' characters of 'string_column' is returnedrpad('DB',5,'a') = DBaaa
Rtrim - rtrim(string_column)Returns the string 'string_column' with trailing spaces removed.rtrim('abcd ') = abcd
Soundex
soundex(string_column)
Returns a soundex string from 'string_column'. The soundex string is similar for
same sounding strings.
soundex('Hello') = H400
Space
space(numeric_column)
The argument value is returned as the number of space characters.space(6) = ' '
Strcmp - strcmp(string_column1, string_column2)Returns -1 if the 'string_column1' is smaller than the 'string_column2', 0 if the two strings are same, and 1 if the 'string_column1' is greater than the 'string_column2'.strcmp('abcd', 'abcde') =-1
Substr
substr(string_column, start_pos, string_len [Optional])
Returns the substring formed by cutting off the string argument passed according
to the needs.
substr('abcddb', 2,) = bcddb
Substring - substring(string_column, start_pos, string_len)Returns a substring from 'string_column'. The substring begins at position 'start_pos' with the character length of 'string_len'.substring('abcddb', 1, 4) = abcd
Substring Between
substring_between(string_column, sub_string, sub_string, start_pos [Optional])
Returns the characters between the two given substrings in the main string.substring_between('abcddb','b','d',1) = c
Substring Count
substring_count(string_column, sub_string)
Returns the count of substring occurred in the main string.substring_count('abcddb','cd') = 1
Substring Index
substring_index(string_column, delimiter, delimiter_count)
Returns the substring from string 'string_column' before count 'delimiter_count'
occurrences of the delimiter 'delimiter'.
substring_index('how.are.you', '.', 2) = how.are
Substring Position
substring_position(string_column, sub_string, start_pos [Optional])
Returns the position of substring in the main string.substring_position('abcddb','cd') = 3
Trim - trim(string_column)Returns the string with all spaces removed in prefix and suffix of the string.trim(' abcd ') = abcd
Ucase
ucase(string_column)
Returns the string 'string_column' with all characters changed to uppercase.ucase('abcD') = ABCD
Unhex
unhex(string_column)
Returns the corresponding character for each pair of hexadecimal digits.unhex('21') = !
Upper
upper(string_column)
Returns the string 'string_column' with all characters changed to uppercase.upper('abcD') = ABCD
Uppercase - uppercase(string_column)  Returns the string 'string_column' with all characters changed to uppercase.uppercase('abcD') = ABCD

Logical Functions

FUNCTIONDESCRIPTIONEXAMPLE
IF - if(expr1,expr2,expr3)Returns expr2 if expr1 is true else it returns expr3if(5> 10,100,3) = 3
If Case
if_case(column, matchExpr1, returnValue1, matchExpr2, returnValue2, ..., elseValue [Optional])
Returns the 'returnValue' if the given column satisfied with 'matchExpr'.if_case('Subject','issue','Issue List',equals('bug'),'Bug List','Support List') = if the 'Subject' column equals issue then it returns 'Issue List' else if 'Subject' column equals 'bug' then it returns 'Bug List' else it returns 'Support List' if_case('Subject',startswith('issue','bug'),'Issue List',contains('help','Call'),'Call List','Support List') = if the 'Subject' column starts with 'issue' or 'bug' then it returns 'Issue List' else if 'Subject' column contains 'help' or 'Call' then it returns 'Call List' else it returns 'Support List'
Ifnull - ifnull(expr1,expr2)Returns expr1 if expr1 is not null, else it return expr2ifnull(null,10) = 10
Is Empty
isempty(column)
Returns '1' if the given column does not have any value. Returns '0' if the given
column have some value.
isempty(null) = 1
isnull( ) - isnull(expr1)Returns 1 if expr1 is null, else it returns 0.isnull(null)- 1

General Functions

FUNCTIONDESCRIPTIONEXAMPLE

To Email  

Syntax: to_email(column)

Converts the plain text column in email format to email datatype.to_email(test@abc.com) = test@abc.com

To Currency   

Syntax:  to_currency(numeric_column)

Converts the numeric column to currency data type,to_currency(3854) = $3854

To Percentage

Syntax: to_percentage(numeric_column)

Converts the numeric column to percentage datatype.to_percentage(83) = 83%
to_percentage(83.54) = 83.54%

To positive integer

Syntax: to_positive_integer(column)

Converts the negative values in the numeric column to positive number datatype.to_positive_integer(-40) = 40

To decision box

Syntax: to_decision_box(column)

Converts plain text values and boolean values like yes, no, true, false, on, off, 1 and 0 to decision box (Yes/No) data type. Values other than the above mentioned value will be returned as Null.to_decision_box(yes) = Yes

Coalesce

Syntax: coalesce(column1, column2,..)

Returns the first non-null value. Returns null if all the values are null.coalesce(null,null,4) = 4

Creating Formulas Over Formula Column

Formula columns are similar to other columns of the table. You can make use of existing formula columns while creating a new formula column, as you do with other columns of the table. Reusing existing formulas column to create new formula columns helps you create powerful formula combination, as well as eases in maintenance of these formula structure in your workspace. Refer to the above section to know how to create formula column.

Creating Reports Using Custom Formula Column

Custom Formula columns can be used while creating reports as you would use a column in a table. When you create a new report over the table, in which you have added the custom formula column, all these formula columns will be listed in the Columns list pane on the left, which can be drag and drop to create the report. 

 

You can apply functions on the formula column, as you do for other columns, using the combo box that is displayed over the column when dropped in the design area of the report.

Sharing Custom Formulas

Once a Custom Formula column is created, it behaves like any other column in a table. When you share a table, all the existing custom formula columns will also be shared to the user.

Note: 

  • The shared user will not be able to edit, delete or format the shared formulas. Also the shared user will not be able to add his own formula column over the shared table, unless the shared user is a Workspace Owner.

Aggregate Formulas

In reporting the most common data analysis that we do is to apply aggregate functions over the data (like SUM, AVG, COUNT etc.,) and analyze the same. The important aspect to be taken care in such calculations is to compute the aggregation in the context in which the function is applied to provide accurate results. Aggregate Formulas in ManageEngine Analytics Plus is meant to address this need.

Aggregate Formulas are formulas that you define in ManageEngine Analytics Plus which uses at least one aggregate function (SUM, AVG..) in the calculation. The output of such calculations is always a numeric value (metric). Aggregate formulas are mainly used in creating powerful reports. These formulas can be used in Charts, Pivot Tables and Summary View report types in ManageEngine Analytics Plus .

  • The result of an Aggregate Formula is always a numeric value.
  • Aggregate Formulas will not be added as another column in the base, it is associated with, like Custom Formulas. But it will be available for report creation when you create a report over the table (listed as part of the columns list).
  • The value of an aggregate formula will be computed for each data point that is displayed in the report in which it is used (i.e., the result is not just a single value). This makes it very powerful.
  • Aggregate formula can be constructed in a similar way as that of a Custom Formula.

ManageEngine Analytics Plus offers a range of in-built aggregate functions which can be used as part of the Aggregate Formulas. You can construct the formulas using these in-built aggregate functions combining it with the basic arithmetic operators like +, -, / and *.

Creating Aggregate Formulas

To create an aggregate formula:

  • Select Add > Aggregate Formula option from the toolbar as shown below. 

  • The Add Aggregate Formula dialog box will open as shown below. This dialog box provides easy access to the names of the columns in your table, as well as to all the in-built functions that are available for you to create the formula. A brief description of the function with syntax and an example will be displayed at the bottom of the dialog box when you hover your mouse over a function.
  • In the Formula Column Name text box, type the name that you want to give to the formula.
  • Choose the data type of the aggregate result from the DataType drop-down. The supported data types include Number, Positive Number, Decimal Number, Currency, Percentage, Duration, Plain Text, and Date.
  • In the Formula text area provide the actual formula. You can select the columns and functions that you want to insert into the formula from the list from the Columns and the Function boxes.

    Note: You can also insert columns from related tables joined through Lookup Column. The drop-down lists all the parent table associated with the base table. Select the required table, the columns in this table will be listed below. You can insert this in the formula by clicking.

  • For example, to apply an aggregate formula to calculate % Profit the formula could be something like (SUM("SALE")- SUM("COST"))/SUM("COST")*100 as shown in the screenshot below.

 

  • Click OK.

The result of Aggregate Formulas will not be added as a column in the base table. It will be listed in the column panel while creating reports. You can access (view) or edit it by clicking Add > Edit Formulas in the toolbar. Viewing & Editing Formulas is discussed in the next section.

In-built Aggregate Functions

While you create an aggregate formula you can use a wide range of powerful in-built functions that are supported by ManageEngine Analytics Plus . You can use the in-built functions, that are applicable while creating custom formulas, even when you create an Aggregate formula, provided it meets the required conditions for an Aggregate formula. There are also specific functions which are more relevant & applicable for creating Aggregate formulas. The following table describes these functions:

FUNCTIONDESCRIPTION
Sum - sum(numeric_column)Returns the sum of the 'numeric_column'
Avg - avg(numeric_column)Returns the average of the 'numeric_column'
Min - Min(numberic_column)Returns the minimum of the 'numeric column'
Max - max(numeric_column)Returns the maximum of the 'numeric_column'
Count - count(column)Returns the number of rows (values) in the given column
Stddev - stddev(numeric_column)Returns the standard deviation of the 'numeric_column'
Variance - variance(numeric_column)Returns the variance of the 'numeric_column'
Distinct Count - count(distinct(column))Returns the distinct number of values (rows) in the given column.
SumIf - sumif(condition, expr1, expr2)Returns the sum of expr1, if condition is true. Else it will return the sum of expr 2. The expr1 and the expr2 can be an expression or just a numeric column. The expr2 is an optional argument. Example: sumif(Region = 'East, Sales, 0) will return the sum of values in the sales column for all the records which matches the value East in the Region column. Else it will return 0.
AvgIf - avgif(condition, expr1, expr2)Returns the average of expr1, if condition is true. Else it will return the average of expr 2. The expr1 and the expr2 can be an expression or just a numeric column. The expr2 is an optional argument. Example: avgif(Region = 'East, Sales, 0) will return the average of values in the sales column for all the records which matches the value East in the Region column. Else it will return 0.
CountIf- countif(condition)Returns the number of rows (records) that satisfies the condition. Example: countif(Region='East') will return the number of rows (records) in the table which matches the value East in the Region column.
YTD -YTD(AggExpr,Date_Col)

Year-to-dateis a period, starting from the beginning of the current year and ends at the current day.

Arguments:
AggExpr - Should be a Aggregate expression (which uses aggregate functions like SUM, AVG, ... ) for which the Year to date value will be calculated
Date_Col - Should be a date column based on which Year to Date will be calculated.

Example: YTD(Sum(sales), OrderDate) will return the Sum of sales for the current Year till current day, based on date column 'OrderDat

QTD - QTD(AggExpr,Date_Col)

Quarter-to-dateis a period, starting from the beginning of the current quarter and ends at the current day.

Arguments:
AggExpr - Should be a Aggregate expression (which uses aggregate functions like SUM, AVG, ... ) for which the Quarter to date value will be calculated
Date_Col - Should be a date column based on which Quarter to Date will be calculated.

Example: QTD(Sum(sales), OrderDate) will return the Sum of sales for the current Quarter till current day, based on date column 'OrderDate'.

MTD - MTD(AggExpr,Date_Col)

Month-to-dateis a period, starting from the beginning of the current month and ends at the current day.

Arguments:
AggExpr - Should be a Aggregate expression (which uses aggregate functions like SUM, AVG, ... ) for which the Month to date value will be calculated 
Date_Col - Should be a date column based on which Month to Date will be calculated.

Example: MTD(Sum(sales), OrderDate) will return the Sum of sales for the current Month till current day, based on date column 'OrderDate'.

Creating Aggregate Formula over existing Aggregate Formulas

ManageEngine Analytics Plus enables you to build aggregate formulas using existing aggregate formulas. Reusing existing formulas to create new aggregate formula helps you create powerful formula combination, as well as eases maintenance of these formula structure in your workspace.

When you create a new aggregate formula, existing formulas will be listed in the Click to Insert Columns box along with other columns. All the aggregate formulas will be indicated in brown with the symbol. You can insert these formulas into your new formula definition by clicking them, as you do for the other columns in the table.

 

For example, Let's assume that you have already calculated profit percentage and total cost and you want to calculate total profit gained. Then you can use the existing aggregate formulas to calculate total profit gained. The formula could be something like ("Total Cost" * "Profit") / 100.

Creating Reports using Aggregate Formulas

Aggregate formulas can be used while creating all reports (charts, pivot tables and summary views) as you would use a column in a table. When you create a new report over the table, in which you have added the aggregate formula, all the formulas will be listed in the Columns list pane on the left, which can be drag & dropped to create the report.

The following screenshot shows the % Profit aggregate formula, that we added, listed in the columns list page. All the aggregate formulas will be indicated with an icon which contains the symbol.

From the Explorer tab of the workspace, select the table to which you want to add the aggregate formula.

Aggregate formulas can be used in the report as you use any other data columns in the table. The value of the aggregate formula will be computed for each data point that is displayed in the report in which it is used (i.e., the result is not just a single value). In the chart shown in the screenshot below, the percentage of profit (%Profit) is plotted against the Year. As you see, the value of the Profit percentage is calculated for each year and plotted in the graph.

When you use an Aggregate formula in a report, you will not be able to apply other functions on the formula (as you do for other columns). The function will always be selected as 'Actual' and cannot be modified.

Sharing Aggregate Formulas

With respect to sharing and collaboration, Aggregate Formulas behave similar to how a column in a table behaves. When you share a table, all the aggregate formulas that are created over the table will be also shared to the user to whom you are sharing the table. Hence the shared user will be able to use these formulas while creating any report over the data table.

Note:

  • The shared user will not be able to edit, delete or format the shared aggregate formula, but can just use it in report creation. Also the shared user will not be able to add his own Aggregate formulas over the shared table, unless the user is a Workspace Owner.

View/Edit Formulas

ManageEngine Analytics Plus allows you to view, edit, format and delete all the formulas defined for a table through the Edit Formula option. You can view & edit both Custom Formulas and Aggregate Formulas using this option. To view/edit existing custom or aggregate formulas:

  • Select the required table.
  • Select Add > Edit Formulas option from the toolbar.
  • The Edit Formula dialog box with a list of all the formulas associated to the table will open as shown below:

On hovering over a specific formula, the EditRemove and Format options are available. 

  • Edit Formula: You can edit the constructed formula using the Edit link provided next to the corresponding formula. The Edit Formula/ Aggregate Formula (depending on the type of formula) dialog box will open, and you can modify the existing formula the same way you would when creating a new formula.
  • Delete Formula: You can delete an existing Formula any time from the table using the Remove link provided next to the corresponding formula.
  • Format Formula: You can change the format of the Formula result, like alignment, decimal places, date format, currency symbols etc., depending on its data type of the formula using the Format link provided. It's similar to how you format a data column. Refer here to know how to format a column.